Biomineralisation of metals in soil – effect of metal toxicity and precipitation as a protective mechanism
نویسندگان
چکیده
Biomineralisation offers the potential for in-situ sequestration and subsequent reduction in the bioavailability of heavy metals and radionuclides in the subsurface environment. Calcium carbonate minerals are known to sorb and form solid solutions with a range of target elements, and are readily produced by the actions of common microorganisms on simple chemical precursors. The ability of a commonly used urea-degrading, calcium carbonate-precipitating bacterium, Sporosarcina pasteurii, to tolerate the presence of a model contaminant, strontium, was determined in aqueous solution, with reduction in growth only seen at concentrations of 10 mM. Its ability to remove strontium from solution via calcium carbonate precipitation was then determined, and here S. pasteurii was shown to be able to remove 99% (+/1%) strontium from solution at concentrations up to 30 mM. This suggests that biomineralisation of metallic elements may afford a protective mechanism for the bacteria through providing a means to reduce the overall concentrations to tolerable levels. Finally, we explored the effects of ground conditions on mineralisation and strontium sequestration in different sand fractions (fine, medium and coarse), in a series of batch experiments. Almost all (97-99%) strontium present was removed from aqueous solution after three days, whereas no precipitation was observed in control samples over the same period. The amount of strontium removed increased with coarseness of sand grains under these static conditions, although over a very small range.
منابع مشابه
Human Sperm Quality and Metal Toxicants: Protective Effects of some Flavonoids on Male Reproductive Function
Objective Metals can cause male infertility through affection of spermatogenesis and sperm quality. Strong evidences confirm that male infertility in metal-exposed humans is mediated via various mechanisms such as production of reactive oxygen species (ROS). Flavonoids have antioxidant and metal chelating properties which make them suitable candidates for neutralizing adverse effects of metals ...
متن کاملComparison of kinetic study and protective effects of biological dipeptide and two porphyrin derivatives against metal cytotoxicity in human lymphocytes
In this research, dipeptide (his-β-alanine) and porphyrin derivatives were choosen for comparing chelating ability of toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+ in vitro. The reason for choosing these two compounds is that both of them are naturally present in biological systems and comparison of chelating ability of these two compounds has not yet been done. Synthesis and comparison of kin...
متن کاملComparison of kinetic study and protective effects of biological dipeptide and two porphyrin derivatives against metal cytotoxicity in human lymphocytes
In this research, dipeptide (his-β-alanine) and porphyrin derivatives were choosen for comparing chelating ability of toxic metals such as Al3+, Cu2+, Hg2+ and Pb2+ in vitro. The reason for choosing these two compounds is that both of them are naturally present in biological systems and comparison of chelating ability of these two compounds has not yet been done. Synthesis and comparison of kin...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کامل